GENETICS OF AUTOSOMAL RECESSIVE POLYCYSTIC KIDNEY DISEASE

Dr Joanna Jarvis
Outline of talk:

- Role of Clinical Geneticist
- Genes and genetic mutations
- Autosomal recessive inheritance: implications for the family
- ARPKD: making the diagnosis
- Discovery of the gene (PKHD1)
- Genetic testing for ARPKD
- ARPKD families
- Reproductive options
- Future approaches
Role of Clinical Geneticist

- Detailed family history
- Confirm diagnosis
- Establish risk to family members
- Discuss reproductive options including prenatal diagnosis
Autosomal recessive inheritance
Chromosomes, DNA, and Genes

Cell → Nucleus → Chromosomes → Gene → Protein

-氨基酸
-资本字母
-句点
atggcccaacaagcatactgctggaactcccccatgc
tgggtgtggcaagccacagctgtctttaaacgagacttgcctcctcag
tgggcaacatcccttgacaccacaccttgcaagacagcacaagcactctcattaggatttttaaagagaacctcaattctgacc
tggccctatgcttgtaaacaccttggtggattattacctggaaaccagctctcagccggcattgcacatcctgacctctgcacagacatgacaagcacctcttggacaggattaatgtggtgggcaagccgccactctggttttactatcctctctcattttgccttcttactaaaatgtctcaagaatggacactgacgttgctcctcacaacaggggtctttggtttgataaccatgcattcaatgattccacagtgtccgaaacagcatcttttcttgcataactccccatgccgattttttcttgcagcactctttcatcgcctttatggaatgtacccttgcaacttcgtctcctttcggttctcattacagtatgaaagaaaacctggagacttttgaagaagtggtcatgcaaatgatggagcatgtgcgaattcatccggaattagtgactggatccaaggaccatgaactggaccctcggaaggtggaagagattagaaactcatgatgttgtgatcgagtgtgccaaaatctctctggatcccacagaagcctcatatgaagatggctattctgtgtctcaccaaatctcagccgctttcctcatcgttcagccgatgtcaccagcccttatggccacgtggcggaagtctatctcgtccatctcctgccagtgtacgcactctttcatcgcctttatggaatgtacccttgcaacttcgtctcctttgtgcactccccattttggaactgaccttgatccaatgattccacagtgtccgaaacagcatcttttcttgcataactccccatgccgattttttcttgcagcactctttcatcgcctttatggaatgtacccttgcaacttcgtctcctttgcgttctcattacagtatgaaagaaaacctggagacttttgaagaagtggtcatgcaaatgatggagcatgtgcgaattcatccggaattagtgactggatccaaggaccatgaactggaccctcggaaggtggaagagattagaaactcatgatgttgtgatcgagtgtgccaaaatctctctggatcccacagaagcctcatatgaagatggctattctgtgtctcaccaaatctcagccgctttcctcatcgttcagccgatgtcaccagcccttatg
the big fat cat and dog ran and sat…..
the big fat cat and dog ran and sat…..
the big fat cat and dog ran and sat…..
the big sat cat and dog ran and sat…..
One gene - many mutations

- Some changes are clearly pathological mutations
- Mutations may be unique, not previously recorded
- Some changes are more difficult to interpret
 - Are they at a functionally critical position in the protein?
 - Are they polymorphisms, i.e., harmless gene changes seen in the general population that don’t change gene function
SEGREGATION OF AUTOSOMAL RECESSIVE TRAIT
(both parents carriers)

Carrier Father

Carrier Mother

R r
R r
R r
r r

Normal Carrier Carrier Affected
PEDIGREE OF AUTOSOMAL RECESSIVE INHERITANCE

- **Affected Individual**
- **Normal Individual**
- **Non-Affected Carrier**
ARPKD families
Family 2

PKHD1 mutation
Diagnosis of ARPKD
Diagnosis of ARPKD

- Family history consistent with autosomal recessive inheritance
- Typical findings on imaging of the kidneys
- Absence of cysts on kidneys in both parents
- Liver fibrosis
- 'Ductal plate' abnormality
- Diagnosis of ARPKD in a brother/sister
- Genetic testing
Diagnosis of ARPKD: considering other causes of polycystic kidneys

- Autosomal dominant polycystic kidney disease (ADPKD)
- Glomerulocystic kidney disease;
- Syndrome conditions: eg nephronophthisis, Joubert syndrome, Meckel-Gruber syndrome
ADPKD v ARPKD

- ADPKD:
 - is dominantly inherited, passed from one generation to the next
 - More common
 - Linked with different genes (PKD1 and PKD2)
 - Age of end stage renal failure: commonly middle age
 - Liver and pancreatic cysts
 - Liver fibrosis very rare
Discovery of the ARPKD gene (PKHD1 gene)

- ARPKD first linked to Chromosome 6 in 1994
- PKHD1 (polycystic kidney and hepatic disease 1) gene identified and cloned: 2002
- Genetic code for a protein: fibrocytstin function
- The only gene linked with ARPKD
Discovery of the ARPKD gene (PKHD1 gene)

- Mutations in this gene shown to cause cystic kidney disease in mice and rats
- Mutations in this gene identified in families with ARPKD
PKHD1 mutations

- Pick-up rate 75-85%
- 1 in 70 people are carriers
- Type of mutation in the PKHD1 gene may cause more severe disease; others a more mild disease with later onset
- Variability in severity between families
- Severity of disease more consistent within a family
When to do genetic testing for ARPKD

- Uncertainty of diagnosis
- Prenatal diagnosis
- Preimplantation diagnosis
- Screening other family members
Reproductive options

- Antenatal scanning
- Prenatal diagnosis
- Preimplantation diagnosis
Antenatal ultrasound

- Fetal kidneys: large, bright; cysts may be visible
- Usually present in 2nd trimester; may be visible earlier
Prenatal diagnosis

- Diagnosis needs to have been confirmed in affected relative by genetic testing
- Reasons:
 - Couple/doctors can prepare
 - Couple would opt for Termination of pregnancy
- Techniques:
 - Chorionic villus sampling
 - Amniocentesis
Chorionic villus sampling (CVS)

- Carried out at 11-12 weeks
- Placental tissue is used for genetic testing
- Miscarriage risk 1%
Amniocentesis (amnio)

- Carried out at 15 weeks + gestation
- Amniotic fluid is used for analysis
- Miscarriage risk 1%
Birth of a healthy infant following preimplantation PKHD1 haplotyping for autosomal recessive polycystic kidney disease using multiple displacement amplification

Eduardo C. Lau • Marleen M. Janson •
Mark R. Roesler • Ellis D. Avner • Estil Y. Strawn •
David P. Bick
Primplantation diagnosis (PGD)

- Uses In vitro Fertilisation (IVF) technology
- Allows detection of affected and unaffected embryos in the laboratory
- Unaffected embryos implanted to avoid affected pregnancy
Primplantation diagnosis (PGD)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Embryos grown to 4 cell stage</td>
</tr>
<tr>
<td>2</td>
<td>Laser to make hole in embryo wall</td>
</tr>
<tr>
<td>3</td>
<td>Glass needle inserted in hole</td>
</tr>
<tr>
<td>4</td>
<td>One or more cells are removed</td>
</tr>
</tbody>
</table>
Primplantation diagnosis (PGD)

- PGD successful for ARPKD families in UK
- Ongoing pregnancy rate:
 - 36% per cycle started or
 - 50% per embryo transferred
PGD: pros and cons

- **Pros**
 - Offers alternative to prenatal diagnosis, removes uncertainty of affected pregnancy
 - Consideration for couples already opting for IVF

- **Cons**
 - Cost
 - Time to treatment (usually around 9 months)
 - Poor response to IVF/side effects of IVF
 - No eggs available at egg collection
 - No eggs are fertilised to create an embryo
 - No unaffected embryos are available
 - Failure to get genetic result (less than 2% cases)
 - The diagnostic result may not be representative of the embryo
 - Emotional burden with failure of treatment
Future approaches

- Genes that are linked with cystic kidney conditions will be tested simultaneously including the ARPKD gene.
- Genetics may be used to tailor treatment and provide more accurate prognosis.
- Further integration of genetic service with other specialities eg paediatrics, nephrology.
Questions

?